Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
/** * 动态规划。 * @return */ intmain(){ int caseCount; int caseIndex = 0; scanf("%d", &caseCount); while ((caseIndex) < caseCount) { int num[100001] = {0}; int sum[100001] = {0}; int n = 0; scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d", &num[i]); }
int maxSum = sum[0] = num[0]; int startIndex = 0; int endIndex = 0; int temp = 0; for (int i = 1; i < n; ++i) { if (sum[i - 1] < 0) { sum[i] = num[i]; temp = i; } else { sum[i] = num[i] + sum[i - 1]; }
/** * 滑动窗口法。 * @return */ intmain(){ int caseCount; int caseIndex = 0; scanf("%d", &caseCount); while ((caseIndex) < caseCount) { int num[100000] = {0}; int n = 0; scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d", &num[i]); } int maxStartIndex = 0; int width = n; int maxSum = -10000; int maxWidth = 0; while (width > 0) { for (int i = 0; i <= n - width; ++i) { int sum = 0; for (int j = 0; j < width; j++) { sum += num[i + j]; } if (maxSum < sum) { maxSum = sum; maxStartIndex = i; maxWidth = width; } } width--; }